Complex Copper(II) Fluorides

IX. Weberite-Related $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$: The First Fluoride with Copper Both in Square Planar and Octahedral Coordination*

JEAN RENAUDIN, MARC LEBLANC, AND GÉRARD FEREY
Laboratoire des Fluorures, UA CNRS 449, Faculté des Sciences, Route de Laval, 72017 Le Mans Cedex, France

and ARIEL DE KOZAK and MAURICE SAMOUËL
Laboratoire de Cristallochimie du Solide, Université P. et M. Curie, Tour 54, 4 Place Jussieu, 75252 Paris Cedex 05, France

Communicated by E. F. Bertaut, February 25, 1988

Abstract

$\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ is monoclinic (space group $C 2 / c$): $a=12.124(6) \AA, b=7.344(4) \AA, c=6.924(4) \AA, \beta=$ $120.59(4)^{\circ}, Z=4$. The structure is refined from 751 independent reflections to $R=0.047\left(R_{w}=0.050\right)$. Copper ions occupy one square planar and two octahedral sites; sodium ions adopt a distorted cubic coordination. The three-dimensional network is closely related to the orthorhombic weberite structural type and corresponds to a frustrating triangular topology of the magnetic sublattice on which exist both ferro- and antiferromagnetic superexchange interactions. © 1988 Academic Press, Inc.

Introduction

The chemical and X-ray crystallographic studies of the ternary system $\mathrm{NaF}-\mathrm{BaF}_{2}-$ CuF_{2} (2) have evidenced two new phases: $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ and $\mathrm{Na}_{4} \mathrm{BaCu}_{3} \mathrm{~F}_{12}$. In the binary diagram $\mathrm{NaF}-\mathrm{CuF}_{2}$, only NaCuF_{3} (3) and $\mathrm{Na}_{2} \mathrm{CuF}_{4}$ (4) were previously studied. This paper describes the crystal structure of the heptafluoride which is compared to the orthorhombic weberite structural type. The superexchange magnetic interactions on the frustrating topology of Cu^{2+} cations are analyzed.

[^0]
Experimental

Single crystals were obtained under the conditions described elsewhere (2). A very thin blue-green platelet (with the largest face indexed $\{100\}$) was selected for X-ray data collection on an AED2 Siemens-STOE automated four-circle diffractometer. The experimental conditions and crystallographic characteristics are summarized in Table I. The great number of rejected reflections (67%) is explained by the very small dimensions of the crystal and by the large angular range of measurement $\left(\theta_{\text {max }}=\right.$ 45°). The collected intensities were corrected for Lorentz-polarization effects as well as for absorption (Gaussian integra-

TABLE I
Crystallographic Characteristics and Experimental Conditions for X-Ray Data Collection

Symmetry: Monoclinic (space group: $C 2 / c$)
Cell parameters ${ }^{a}$ (from 16 reflections within range $27<2 \theta<35^{\circ}$):
$a=12.124(7) \AA, b=7.344(5) \AA, c=6.924(5) \AA$, $\beta=120.59(4)^{\circ}$
$V=530.7 \AA^{3}, Z=4, M=346.60 \mathrm{~g} \cdot \mathrm{~mole}^{-1}$
Density: $4.33 \mathrm{~g} \cdot \mathrm{~cm}^{3}$ (calculated); $4.35 \mathrm{~g} \cdot \mathrm{~cm}^{3}$ (experimental)
Crystal size: $0.055 \times 0.050 \times 0.010 \mathrm{~mm}^{3}$
Radiation: $\mathrm{MoK} \mathrm{\alpha}(\lambda=0.71073 \AA)$
Linear absorption cocfficient: $121.2 \mathrm{~cm}^{-1}$
Transmission factors: $A_{\text {max }}=0.879 ; A_{\text {min }}=0.740$
Standard reflections: $-804 /-444 / 800$ measured every 60 min
Intensity standard deviation: 2.5% max
Range: $2<\theta<45^{\circ},-26 \leq h \leq 26,0 \leq k \leq 15,-14$ $\leq 1 \leq 14$
40 steps per reflection, 4 sec per step, step width: 0.03°
Measured reflections $=5803$
Rejected reflections $=3914$ (with $I / \sigma(I)<5$)
Independent reflections $=751\left(R_{\text {int }}=0.043\right)$
Number of refined parameters: 58
Weighting scheme: $w=3.6 /\left(\sigma(F)^{2}+5 \times 10^{-4} F^{2}\right)$
Secondary extinction: $5(2) \times 10^{-8}$
Fourier difference map:
maximum height $=2.8 \mathrm{e}^{-} \AA^{-3}$
minimum height $=-2.0 \mathrm{e}^{-} \AA^{-3}$
${ }^{a}$ These cell parameters differ from the previous study (2); the transformation matrix is:

$$
\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] .
$$

tion). Atomic scattering factors and anomalous dispersion corrections were taken from the "International Tables for X-Ray Crystallography" (5) for $\mathrm{Na}^{+}, \mathrm{Cu}^{2+}$, and F^{-} ions.

Structure Resolution

The structure was solved from the options TREF and PATT of the SHELXS-86
program (6) and all refinement calculations were performed using the SHELX-76 program (7) on a D.E.C. MicroVAX-II computer. Two copper sites were first located on 4 a and 4 c positions of space group $C 2 / c$: this led to a reliability factor $R=0.35$. A Fourier map then revealed the positions of the third copper (site 4 d) and sodium (site $4 \mathrm{~b}): R=0.19$. The F^{-}ions were located from successive Fourier syntheses. The refinement of atomic parameters and isotropic temperature factors smoothly converged to $R=0.077\left(R_{\mathrm{w}}=0.079\right)$. The residual fell to $R=0.047$ ($R_{\mathrm{w}}=0.050$) when applying anisotropic thermal motion. It is noteworthy that the maximum residual peaks in the final Fourier difference map are in the vicinity of $\mathrm{Cu}(3)$ ions. Table II presents the final results for the eight independent positions. The list of structure factors may be obtained on request to one of the authors (G.F.).

Description of the Structure

Until now, the main difference between the crystal chemistry of copper oxides (8) and fluorides was the coexistence of several types of coordination for copper in the former (see, for instance, high T_{c} superconductors) and only one type (octahedra or, more rarely, square planes) for the latter. $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ is the first example of coexistence of two different coordination polyhedra for cupric ions in fluorine chemistry: the fluorine octahedra around $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ are classically elongated by the Jahn-Teller effect whereas-this is the most striking feature of the structure- $\mathrm{Cu}(3)$ ions adopt a square planar coordination of $F(2)$ and $F(3)$ ions (Table III). The structural formula of the basic building unit $\mathrm{Cu}_{3} \mathrm{~F}_{7}$ is therefore $\left[\mathrm{Cu}(1) \mathrm{F}(1)_{2 / 2} \mathrm{~F}(2)_{2 / 3} \mathrm{~F}(4)_{2 / 2}\right] \quad\left[\mathrm{Cu}(2) \mathrm{F}(1)_{2 / 2}\right.$ $\left.\mathrm{F}(2)_{2 / 3} \mathrm{~F}(3)_{2 / 2}\right] \quad\left[\mathrm{Cu}(3) \mathrm{F}(2)_{2 / 3} \mathrm{~F}(3)_{2 / 2}\right]$. However, the next-nearest neighbors $F(1)$ and $\mathrm{F}(4)$ of $\mathrm{Cu}(3)$ can also be taken into account despite the long distances: nearly $2.9 \AA$

TABLE II
Structural and Thermal Parameters ($\times 10^{4}$) with Estimated Standard Deviations in
Parentheses ${ }^{a}$

Atom	Site	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}	$B_{\text {eq }}\left(\AA^{2}\right)$
Na	4 b	0	$\frac{1}{2}$	0	$249(23)$	$285(24)$	$268(23)$	$7(34)$	$190(20)$	$9(37)$	$1.90(30)$
$\mathrm{Cu}(1)$	4 a	0	0	0	$112(4)$	$99(4)$	$91(4)$	$-3(9)$	$65(3)$	$-14(9)$	$0.75(5)$
$\mathrm{Cu}(2)$	4 c	$\frac{1}{4}$	1	0	$79(6)$	$112(10)$	$80(7)$	$-8(6)$	$44(6)$	$-23(6)$	$0.70(9)$
$\mathrm{Cu}(3)$	4 d	$\frac{1}{4}$	1	$\frac{1}{2}$	$190(9)$	$102(11)$	$179(9)$	$14(7)$	$138(8)$	$23(7)$	$1.08(12)$
$\mathrm{F}(1)$	8 f	$0976(6)$	$2025(9)$	$0044(12)$	$173(20)$	$160(22)$	$330(28)$	$-44(22)$	$195(22)$	$-40(19)$	$1.50(31)$
$\mathrm{F}(2)$	8 f	$3292(5)$	$2992(9)$	$3186(11)$	$150(20)$	$251(24)$	$110(18)$	$-33(18)$	$83(16)$	$-57(20)$	$1.28(25)$
$\mathrm{F}(3)$	8 f	$1579(6)$	$4664(7)$	$4014(11)$	$234(22)$	$75(20)$	$219(21)$	$18(14)$	$147(19)$	$29(15)$	$1.28(28)$
$\mathrm{F}(4)$	4 e	0	$1070(13)$	1	$656(61)$	$193(37)$	$200(33)$	0	$323(40)$	0	$2.38(57)$

$$
{ }^{a} B_{\mathrm{eq}}=\frac{4}{3} \Sigma_{i} \Sigma_{j} B_{i j}\left(a_{i} \cdot a_{j}\right)(17)
$$

TABLE III
Selection of Interatomic Distances (Å) and Bond Angles

Na polyhedron				
$\mathrm{Na}-\mathrm{F}(3) \quad 2 \times 2.353(7)$				
$\mathrm{Na}-\mathrm{F}(3) \quad 2 \times 2.453(4)$				
$\mathrm{Na}-\mathrm{F}(1) \quad 2 \times 2.476(5)$				
$\mathrm{Na}-\mathrm{F}(2)$	$2 \times 2.837(5)$	$\langle\mathrm{Na}-\mathrm{F}\rangle=2.530$		
$\mathrm{Cu}(1)$ octahedron				Angle at $\mathrm{Cu}(1)$
$\mathrm{Cu}(1)-\mathrm{F}(1)$	$2 \times 1.891(6)$	$2 \times \mathrm{F}(1)-\mathrm{F}(4)$	2.617(4)	87.4(4) ${ }^{\circ}$
$\mathrm{Cu}(1)-\mathrm{F}(4)$	$2 \times 1.898(3)$	$2 \times \mathrm{F}(4)-\mathrm{F}(2)$	$2.712(6)$	$79.4(4)^{\circ}$
$\mathrm{Cu}(1)-\mathrm{F}(2)$	$2 \times 2.319(5)$	$2 \times \mathrm{F}(1)-\mathrm{F}(4)$	2.740 (8)	92.6(4) ${ }^{\circ}$
		$2 \times \mathrm{F}(1)-\mathrm{F}(2)$	2.824(7)	83.6 (5) ${ }^{\circ}$
$\langle\mathrm{Cu}(1)-\mathrm{F}\rangle$	$=2.036$	$2 \times \mathrm{F}(2)-\mathrm{F}(1)$		96.4(4) ${ }^{\circ}$
$\mathrm{Cu}(2)$ octahedron			$3.152(7)$	Angle at $\mathrm{Cu}(2)$
$\mathrm{Cu}(2)-\mathrm{F}(1)$	$2 \times 1.897(6)$	$2 \times \mathrm{F}(1)-\mathrm{F}(2)$	2.634(6)	86.4(5) ${ }^{\circ}$
$\mathrm{Cu}(2)-\mathrm{F}(2)$	$2 \times 1.949(6)$	$2 \times \mathrm{F}(3)-\mathrm{F}(1)$	$2.736(6)$	80.9(4) ${ }^{\circ}$
$\mathrm{Cu}(2)-\mathrm{F}(3)$	$2 \times 2.296(7)$	$2 \times \mathrm{F}(1)-\mathrm{F}(2)$	2.803(5)	93.6(4) ${ }^{\circ}$
		$2 \times \mathrm{F}(2)-\mathrm{F}(3)$	$2.930(7)$	86.9 (4) ${ }^{\circ}$
		$2 \times \mathrm{F}(3)-\mathrm{F}(2)$	$3.091(5)$	$93.1(3)^{\circ}$
$\langle\mathrm{Cu}(2)-\mathrm{F}\rangle$	$=2.047$	$2 \times \mathrm{F}(1)-\mathrm{F}(3)$	$3.201(8)$	$99.1(4)^{\circ}$
$\mathrm{Cu}(3)$ polyhedron				Angle at $\mathrm{Cu}(3)$
$\mathrm{Cu}(3)-\mathrm{F}(3)$	$2 \times 1.862(4)$	$2 \times \mathrm{F}(2)-\mathrm{F}(3)$	2.697(7)	89.8(4) ${ }^{\circ}$
$\mathrm{Cu}(3)-\mathrm{F}(2)$	$2 \times 1.956(4)$	$2 \times \mathrm{F}(2)-\mathrm{F}(3)$	$2.705(6)$	$90.2(3)^{\circ}$
$\langle\mathrm{Cu}(3)-\mathrm{F}\rangle$	$=1.909$			
$\mathrm{Cu}(3)-\mathrm{F}(4)$	$2 \times 2.822(4)$			
$\mathrm{Cu}(3)-\mathrm{F}(1)$	$2 \times 2.979(7)$			
$\mathrm{Cu}-\mathrm{Cu}$ distances		Superexchange angles		
$\mathrm{Cu}(1)-\mathrm{Cu}(1)$	3.462	$\mathrm{Cu}(1)-\mathrm{F}(4)$	(1) 13	
$\mathrm{Cu}(2)-\mathrm{Cu}(3)$	3.462	$\mathrm{Cu}(2)-\mathrm{F}(2)-$		
$\mathrm{Cu}(1)-\mathrm{Cu}(3)$	3.544	$\mathrm{Cu}(1)-\mathrm{F}(2)$		
$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	3.544	$\mathrm{Cu}(1)-\mathrm{F}(1)-$		
$\mathrm{Cu}(2)-\mathrm{Cu}(3)$	3.672	$\mathrm{Cu}(2)-\mathrm{F}(3)-$		
$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	3.724	$\mathrm{Cu}(1)-\mathrm{F}(2)-$		

TABLE IV
Valence Bond Analysis of $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ Using the Zachariasen Law ${ }^{a}$

	$\mathrm{F}(1)$	$\mathrm{F}(2)$	$\mathrm{F}(3)$	$\mathrm{F}(4)$	Σ	$\Sigma_{\text {theo }}$
$\mathrm{Cu}(1)$	2×0.454	2×0.143	-	2×0.445	2.08	2
$\mathrm{Cu}(2)$	2×0.446	2×0.388	2×0.152	-	1.97	2
$\mathrm{Cu}(3)$	2×0.024	2×0.380	2×0.490	2×0.037	1.86	2
Na	2×0.119	2×0.056	$\left\{\begin{array}{ll}2 \times 0.153 & \\ 2 \times 0.125 & - \\ 0.91 & 1 \\ \Sigma & 1.04\end{array} \quad 0.97\right.$	0.92	0.96	

${ }^{a} s=\frac{1}{3} e^{\left(2.005-d_{i}\right) 0.37}$ for $\mathrm{Cu}-\mathrm{F}$ and $s=\frac{1}{8} e^{\left(2.313-d_{i}\right) 0.48}$ for $\mathrm{Na}-\mathrm{F}(9)$.
compared to $2.3 \AA$ for the elongation axes of the octahedra. Indeed the valence bond analysis (9) shows that these $\mathrm{Cu}-\mathrm{F}$ distances account for 6% in the balance (Table IV). Therefore the square plane becomes to some extent a distorted cube (Fig. 1). This is important for the structural correlations described in the last section. In the crystal chemistry of copper fluorides, only CaCu $\mathrm{F}_{4}, \mathrm{SrCuF}_{4}$, and $\mathrm{Sr}_{2} \mathrm{CuF}_{6}(10,11)$ exhibit such an environment.
From [010] projection (Fig. 2), the structure can be considered as a succession of layers parallel to the ($h 00$) planes which

Fig. 1. ORTEP drawing (I8) of the $\mathrm{Cu}(3)$ environment: the short bonds are filled.
correspond to the main faces of the platelet. The first type of layer (at $x=\frac{1}{4}$ or $\frac{3}{4}$) is built up from $\mathrm{Cu}(2)$ octahedra and $\mathrm{Cu}(3)$ square planes which form together a distorted bidimensional network like a defect perovskite (Fig. 3a). The second layer (at $x=0$ or $\frac{1}{2}$) is composed of two kinds of infinite chains running along the c-axis: a trans chain of corner-sharing $\mathrm{Cu}(1)$ octahedra (in which elongation axes of two consecutive octahedra are orthogonal) linked to a chain of edge-sharing Na cubes (Fig. 3b). These different layers are connected by vertices in such a way that the three copper polyhedra form a triangular cationic sublattice (Fig. 4). Therefore the corresponding topology is frustrating and this point will be developed in the next section from the magnetic point of view.

Fig. 2. The (010) projection of $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ using the program STRUPLO (19). $\mathrm{Cu}(1)$ octahedra are hatched and $\mathrm{Cu}(3)$ square planes are dot-shaded.

Fig. 3. Comparison between the two kinds of layers in $\mathrm{NaCu}_{3} \mathrm{~F}_{7}(\mathrm{a}, \mathrm{b})$ and in the orthorhombic weberites $\mathrm{Na}_{2} \mathrm{M}^{2+} \mathrm{M}^{3+} \mathrm{F}_{7}$ (c, d). Sodium ions are represented by large circles.

Discussion

With this new result, an unexpected structural trend appears within the binary system $\mathrm{NaF}-\mathrm{CuF}_{2}$. In contrast to the $\mathrm{BaF}_{2}-\mathrm{CuF}_{2}$ diagram in which the ratio of edge-sharing octahedra increases with the Cu content when $\mathrm{Cu} / \mathrm{Ba}>1 / 1$ (12), no edge-sharing occurs in $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ which is the closest compound to rutile CuF_{2} in the system $\mathrm{NaF}-\mathrm{CuF}_{2}$; on the contrary, it is found for the copper-poor region with Na_{2} CuF_{4} structure, which is described by isolated rutile chains (4).

Beside their close chemical formulas, the structures of $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ and of the orthorhombic weberites $\mathrm{Na}_{2} \mathrm{M}^{2+}{ }^{3}{ }^{3+} \mathrm{F}_{7}$ $(13,14)$ (space group Imma) are very similar. Indeed, $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ may be described in the pseudo-orthorhombic cell ($a_{0}=c, b_{0}=$ $a+c, c_{0}=b$, and $\gamma=83^{\circ}$) with space group $I 112 / a$ which is a subgroup of $I 2 / m 2 / m 2 / a$.

If we remember that sodium ions adopt two types of eightfold coordination in the weberite (i.e., a cube and a hexagonal bipyramid), the structural relations are obvious when considering the two kinds of layers described above: the packing of trans chains $\left[\mathrm{NaCu}(1) \mathrm{F}_{4}\right]^{-1}$ and $\left[\mathrm{NaM}^{2+} \mathrm{F}_{4}\right]^{-1}$, with Na inside cubes, is strictly identical in $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ (Fig. 3b) and $\mathrm{Na}_{2} \mathrm{M}^{2+} \mathrm{M}^{3+} \mathrm{F}_{7}$ (Fig. 3d). The other kind of layer, formulated $\left[\mathrm{Cu}(2) \mathrm{Cu}(3) \mathrm{F}_{3}\right]^{+1}$ in $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ (Fig. 3a), becomes $\left[\mathrm{NaM}^{3+} \mathrm{F}_{3}\right]^{+1}$ in the weberite because the hexagonal bipyramid of sodium in $\left[\mathrm{Na}_{2} \mathrm{M}^{2+} \mathrm{M}^{3+} \mathrm{F}_{7}\right.$ (Fig. 3c) replaces the distorted cube of $\mathrm{Cu}(3)$ after some rotation of the single octahedra. Therefore the correlative formulation of $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ can be written $[\mathrm{Na}-\mathrm{Cu}(3)][\mathrm{Cu}(1)-\mathrm{Cu}(2)] \mathrm{F}_{7}$ from the comparison with $\left[\mathrm{Na}_{2}\right]\left[M^{2+} \boldsymbol{M}^{3+}\right] \mathrm{F}_{7}$.

Two important features arise from the (001) projection of the structure (Fig. 4). Infinite trans chains of $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ octahedra appear along the $[-110]$ direction at the $z=0$ level and along [110] at $z=\frac{1}{2}$. In these chains, the elongation axes of the octahedra are roughly parallel and arranged in a ferrodistortive way. This would lead to an antiferromagnetic coupling in these chains, the superexchange pathway involving ex-

Fig. 4. Projection of $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ along the c-axis showing the ferrodistortive arrangement of elongated octahedra. Sodium ions are represented by large circles.

Fig. 5. Comparison of the magnetic subnetworks in the $(0-11)$ plane for the weberite (a) and (-110) for $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ (b).
clusively the $d_{x^{2}-y^{2}}$ orbitals (15) and the $d_{z^{2}}$ orbitals pointing toward the F^{-}ions of the square plane around $\mathrm{Cu}(3)$. Therefore ferromagnetic interactions are expected via $d_{z^{2}-p-} d_{x^{2}-y^{2}}$ between $\mathrm{Cu}(1)$ or $\mathrm{Cu}(2)$ and $\mathrm{Cu}(3)$. The second feature, already evoked at the end of the description, comes from the connection between two parallel trans chains via $\mathrm{Cu}(3)$ square planes: the complete copper subnetwork draws triangular cycles. Consequently, $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ must exhibit an enhanced frustrating magnetic topology when compared to that of the weberite. In the latter, triangular platelets surround hexagonal ones in the (110) and (-110) planes (Fig. 5a) and build up a "kagome plane net" (noted 3.6.3.6 using the

Schläfli symbol (16)) of magnetic cations. In the former, $\mathrm{Cu}(3)$ occupies the center of the above hexagons and induces two additional triangular platelets, i.e., a (3.4.3.4, $\left.3^{2} .4 .3^{2} .4\right)$ plane net (Fig. 5b). The existence of a frustrating topology on which ferro- and antiferromagnetic interactions are involved must lead to a very interesting magnetic behavior study which is currently in progress both on $\mathrm{NaCu}_{3} \mathrm{~F}_{7}$ and substituted compounds.

Acknowledgment

The authors are very indebted to Dr. J. Pannetier for his heip in valence bond analysis and his critical reading of the manuscript.

References

1. J. Renaudin, G. Ferey, A. de Kozak, and M. Samouél, Rev. Chim. Miner. 24, 295 (1987), and references therein.
2. A. de Kozak, M. Samouël, J. Renaudin, and G. Ferey, submitted for publication.
3. W. Rüdorff, G. Lincke, and D. Babel, Z. Anorg. Allg. Chem. 320, 150 (1963).
4. D. Babel, Z. Anorg. Allg. Chem. 336, 200 (1965).
5. J. A. Ibers and W. C. Hamilton, Eds., "International Tables for X-Ray Crystallography," Vol. IV, Kynoch Press, Birmingham (1974).
6. G. M. Sheldrick, SHELXS-86, in "Crystallographic Computing 3" (G. M. Sheldrick, C. Krüger, and R. Goddard, Eds.), pp. 175-189, Oxford Univ. Press, London/New York (1985).
7. G. M. Sheldrick, "SHELX-76: A Program for Crystal Structure Determination," Cambridge (1976).
8. B. Raveau, Proc. Indian Natl. Sci. Acad. A 52, 67 (1986).
9. G. Ferey, M. Leblanc, A. de Kozak, M. Samouël, and J. Pannetier, J. Solid State Chem. 56, 288 (1985), and references therein.
10. H. G. Von Schnering, B. Kolloch, and A. Kolodziejczyk, Angew. Chem. 12, 440 (1971).
11. R. von der Mühll, D. Dumora, J. Ravez, and P. Hagenmuller, J. Solid State Chem. 2, 262 (1970).
12. J. Renaudin, G. Ferey, A. de Kozak, and M. Samouell, Rev. Chim. Miner. 23, 497 (1986).
13. Y. Laligant, G. Ferey, G. Heger, and J. Pannetier, Z. Anorg. Allg. Chem. 553, 163 (1987), and references therein.
14. S. Kummer, Thesis, Marburg (1986).
15. D. Reinen and C. Friebel, Structure Bonding 37, 1 (1979).
16. M. O'Keeffe and B. G. Hyde, Philos. Trans. R. Soc. London, Ser. A 295, 553 (1980), and references therein.
17. W. C. Hamilton, Acta Crystallogr. 12, 609 (1959).
18. C. K. Johnson, "ORTEP-II," Oak Ridge National Laboratory (1971).
19. R. X. Fischer, STRUPLO-84, J. Appl. Crystallogr. 18, 258 (1985).

[^0]: * For parts I to VIII, see Refs. (1, 2).

